Policy Gradients CS 285 Instructor: Sergey Levine UC Berkeley ### The goal of reinforcement learning $$\underbrace{p_{\theta}(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{p_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$ $$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$ ### The goal of reinforcement learning $$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$ $$\theta^{\star} = \arg\max_{\theta} E_{(\mathbf{s}, \mathbf{a}) \sim p_{\theta}(\mathbf{s}, \mathbf{a})}[r(\mathbf{s}, \mathbf{a})] \qquad \qquad \theta^{\star} = \arg\max_{\theta} \sum_{t=1}^{r} E_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim p_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})}[r(\mathbf{s}_{t}, \mathbf{a}_{t})]$$ infinite horizon case ## Evaluating the objective $$\theta^* = \arg \max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$ $$J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$ sum over samples from π_{θ} ### Direct policy differentiation $$\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_t, \mathbf{a}_t) \right]$$ $$J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)] = \int p_{\theta}(\tau)r(\tau)d\tau$$ $$\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t})$$ a convenient identity $$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = p_{\theta}(\tau)\frac{\nabla_{\theta}p_{\theta}(\tau)}{p_{\theta}(\tau)} = \nabla_{\theta}p_{\theta}(\tau)$$ $$\nabla_{\theta} J(\theta) = \int \underline{\nabla_{\theta} p_{\theta}(\tau)} r(\tau) d\tau = \int \underline{p_{\theta}(\tau)} \nabla_{\theta} \log p_{\theta}(\tau) r(\tau) d\tau = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$ ## Direct policy differentiation $$\theta^* = \arg \max_{\theta} J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$ $$\log \text{ of both sides } p_{\theta}(\tau)$$ $$\log p_{\theta}(\tau) = \log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$ $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$ $$\nabla_{\theta} \left[\log p(\mathbf{s}_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) + \log p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) \right]$$ $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$ # Evaluating the policy gradient recall: $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$ $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$ $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ $$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$ #### REINFORCE algorithm: - 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy) - 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$ - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ # Understanding Policy Gradients ## Evaluating the policy gradient recall: $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \approx \frac{1}{N} \sum_{i} \sum_{t} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})$$ $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$ $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ what is this? \mathbf{a}_t ### Comparison to maximum likelihood policy gradient: $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ maximum likelihood: $$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$$ ### Example: Gaussian policies $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ example: $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = \mathcal{N}(f_{\text{neural network}}(\mathbf{s}_t); \Sigma)$ $$\log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = -\frac{1}{2} ||f(\mathbf{s}_t) - \mathbf{a}_t||_{\Sigma}^2 + \text{const}$$ $$\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) = -\frac{1}{2} \Sigma^{-1} (f(\mathbf{s}_t) - \mathbf{a}_t) \frac{df}{d\theta}$$ #### REINFORCE algorithm: 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ #### Iteration 2000 ### What did we just do? $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i}) r(\tau_{i})$$ $$\sum_{t=1}^{T} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$ maximum likelihood: $$\nabla_{\theta} J_{\mathrm{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log \pi_{\theta}(\tau_{i})$$ good stuff is made more likely bad stuff is made less likely simply formalizes the notion of "trial and error"! #### REINFORCE algorithm: 2. $$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$$ 3. $$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$ ### Partial observability $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{o}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ Markov property is not actually used! Can use policy gradient in partially observed MDPs without modification ## What is wrong with the policy gradient? #### Review - Evaluating the RL objective - Generate samples - Evaluating the policy gradient - Log-gradient trick - Generate samples - Understanding the policy gradient - Formalization of trial-and-error - Partial observability - Works just fine - What is wrong with policy gradient? # Reducing Variance #### Reducing variance $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$ Causality: policy at time t' cannot affect reward at time t when t < t' $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \left(\sum_{t' \neq t}^{T} r(\mathbf{s}_{i,t'}, \mathbf{a}_{i,t'}) \right)$$ "reward to go" $$\hat{Q}_{i,t}$$ #### Baselines #### a convenient identity $$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$ $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$ $$b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$$ $b = \frac{1}{N} \sum_{i=1}^{N} r(\tau)$ but... are we *allowed* to do that?? $$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \,d\tau = \int \nabla_{\theta} p_{\theta}(\tau)b \,d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta} 1 = 0$$ subtracting a baseline is *unbiased* in expectation! average reward is *not* the best baseline, but it's pretty good! #### Analyzing variance can we write down the variance? $$Var[x] = E[x^2] - E[x]^2$$ $$\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) (r(\tau) - b)]$$ $$Var = E_{\tau \sim p_{\theta}(\tau)} [(\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b))^{2}] - E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau)(r(\tau) - b)]^{2}$$ this bit is just $E_{\tau \sim p_{\theta}(\tau)}[\nabla_{\theta} \log p_{\theta}(\tau)r(\tau)]$ (baselines are unbiased in expectation) $$\frac{d\text{Var}}{db} = \frac{d}{db}E[g(\tau)^2(r(\tau) - b)^2] = \frac{d}{db}\left(E[g(\tau)^2r(\tau)^2] - 2E[g(\tau)^2r(\tau)b] + b^2E[g(\tau)^2]\right)$$ $$= -2E[g(\tau)^2r(\tau)] + 2bE[g(\tau)^2] = 0$$ $$b = \frac{E[g(\tau)^2 r(\tau)]}{E[g(\tau)^2]} \quad \longleftarrow$$ This is just expected reward, but weighted by gradient magnitudes! #### Review - The high variance of policy gradient - Exploiting causality - Future doesn't affect the past - Baselines - Unbiased! - Analyzing variance - Can derive optimal baselines # Off-Policy Policy Gradients ### Policy gradient is on-policy $$\theta^{\star} = \arg\max_{\theta} J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$ $$\nabla_{\theta} J(\theta) = E_{\underline{\tau \sim p_{\theta}(\tau)}} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$$ this is trouble... - Neural networks change only a little bit with each gradient step - On-policy learning can be extremely inefficient! REINFORCE algorithm: can't just skip this! - 1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run it on the robot) - 2. $\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i}|\mathbf{s}_{t}^{i}) \right) \left(\sum_{t} r(\mathbf{s}_{t}^{i}, \mathbf{a}_{t}^{i}) \right)$ - 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ # Off-policy learning & importance sampling $$\theta^* = \arg\max_{\theta} J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$ what if we don't have samples from $p_{\theta}(\tau)$? (we have samples from some $\bar{p}(\tau)$ instead) $$J(\theta) = E_{\tau \sim \bar{p}(\tau)} \left[\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} r(\tau) \right]$$ $$p_{\theta}(\tau) = p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$ $$\frac{p_{\theta}(\tau)}{\bar{p}(\tau)} = \frac{p(\mathbf{s}_1) \prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)}{p(\mathbf{s}_1) \prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)} = \frac{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \bar{\pi}(\mathbf{a}_t | \mathbf{s}_t)}$$ #### importance sampling $$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$ $$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$ $$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$ $$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$ ### Deriving the policy gradient with IS $$\theta^{\star} = \arg\max_{\theta} J(\theta)$$ $$J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$ can we estimate the value of some new parameters θ' ? $$J(heta') = E_{ au \sim p_{ heta}(au)} \left[rac{p_{ heta'}(au)}{p_{ heta}(au)} r(au) ight]$$ the only bit that depends on $heta'$ $$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{\nabla_{\theta'} p_{\theta'}(\tau)}{p_{\theta}(\tau)} r(\tau) \right] = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log p_{\theta'}(\tau) r(\tau) \right]$$ now estimate locally, at $\theta = \theta'$: $\nabla_{\theta} J(\theta) = E_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log p_{\theta}(\tau) r(\tau)]$ a convenient identity $$p_{\theta}(\tau)\nabla_{\theta}\log p_{\theta}(\tau) = \nabla_{\theta}p_{\theta}(\tau)$$ # The off-policy policy gradient $$\theta^* = \arg\max_{\theta} J(\theta) \qquad J(\theta) = E_{\tau \sim p_{\theta}(\tau)}[r(\tau)]$$ $$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} \nabla_{\theta'} \log \pi_{\theta'}(\tau) r(\tau) \right] \quad \text{when } \theta \neq \theta'$$ $$\frac{p_{\theta'}(\tau)}{p_{\theta}(\tau)} = \frac{\prod_{t=1}^{T} \pi_{\theta'}(\mathbf{a}_t | \mathbf{s}_t)}{\prod_{t=1}^{T} \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)}$$ $$= E_{\tau \sim p_{\theta}(\tau)} \left[\left(\prod_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \right) \left(\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right) \right]$$ what about causality? $$= E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{\underline{t'=1}}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \left(\prod_{\underline{t''=t}}^{t'} \frac{\pi_{\theta'}(\mathbf{a}_{t''}|\mathbf{s}_{t''})}{\pi_{\theta}(\mathbf{a}_{t''}|\mathbf{s}_{t''})} \right) \right) \right]$$ future actions don't affect current weight if we ignore this, we get a policy iteration algorithm (more on this in a later lecture) # A first-order approximation for IS (preview) $$\nabla_{\theta'} J(\theta') = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\underbrace{\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$ let's write the objective a bit differently... on-policy prolicy gradient: $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$ $$(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \sim \pi_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t})$$ off-policy policy gradient: $\nabla_{\theta'} J(\theta') \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t}, \mathbf{a}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$ We'll see why this is reasonable later in the course! $$= \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \frac{\pi_{\theta'}(\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{s}_{i,t})} \frac{\pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})}{\pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$ ignore this part exponential in T... # Implementing Policy Gradients ### Policy gradient with automatic differentiation $$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}$$ pretty inefficient to compute these explicitly! How can we compute policy gradients with automatic differentiation? We need a graph such that its gradient is the policy gradient! maximum likelihood: $$\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \qquad J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t})$$ Just implement "pseudo-loss" as a weighted maximum likelihood: $$\tilde{J}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \hat{Q}_{i,t}$$ cross entropy (discrete) or squared error (Gaussian) #### Policy gradient with automatic differentiation Pseudocode example (with discrete actions): #### Maximum likelihood: ``` # Given: # actions - (N*T) x Da tensor of actions # states - (N*T) x Ds tensor of states # Build the graph: logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits) loss = tf.reduce_mean(negative_likelihoods) gradients = loss.gradients(loss, variables) ``` #### Policy gradient with automatic differentiation Pseudocode example (with discrete actions): #### Policy gradient: ``` # Given: # actions - (N*T) x Da tensor of actions # states - (N*T) x Ds tensor of states # q_values - (N*T) x 1 tensor of estimated state-action values # Build the graph: logits = policy.predictions(states) # This should return (N*T) x Da tensor of action logits negative_likelihoods = tf.nn.softmax_cross_entropy_with_logits(labels=actions, logits=logits) weighted_negative_likelihoods = tf.multiply(negative_likelihoods, q_values) loss = tf.reduce_mean(weighted_negative_likelihoods) gradients = loss.gradients(loss, variables) ``` $$ilde{J}(heta) pprox rac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \log \pi_{ heta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}|\hat{Q}_{i,t})$$ q_values #### Policy gradient in practice - Remember that the gradient has high variance - This isn't the same as supervised learning! - Gradients will be really noisy! - Consider using much larger batches - Tweaking learning rates is very hard - Adaptive step size rules like ADAM can be OK-ish - We'll learn about policy gradient-specific learning rate adjustment methods later! #### Review - Policy gradient is on-policy - Can derive off-policy variant - Use importance sampling - Exponential scaling in T - Can ignore state portion (approximation) - Can implement with automatic differentiation – need to know what to backpropagate - Practical considerations: batch size, learning rates, optimizers # Advanced Policy Gradients # What else is wrong with the policy gradient? $$r(\mathbf{s}_t, \mathbf{a}_t) = -\mathbf{s}_t^2 - \mathbf{a}_t^2$$ $$\log \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t) = -\frac{1}{2\sigma^2}(k\mathbf{s}_t - \mathbf{a}_t)^2 + \text{const} \qquad \theta = (k, \sigma)$$ (image from Peters & Schaal 2008) Essentially the same problem as this: # Covariant/natural policy gradient $$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$ $\pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t)$ some parameters change probabilities a lot more than others! $$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } \underline{\|\theta' - \theta\|^2 \le \epsilon}$$ controls how far we go can we rescale the gradient so this doesn't happen? $$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$ parameterization-independent divergence measure usually KL-divergence: $$D_{\text{KL}}(\pi_{\theta'} || \pi_{\theta}) = E_{\pi_{\theta'}}[\log \pi_{\theta} - \log \pi_{\theta'}]$$ $$D_{\mathrm{KL}}(\pi_{\theta'} \| \pi_{\theta}) \approx (\theta' - \theta)^T \mathbf{F}(\theta' - \theta) \qquad \mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s}) \nabla_{\theta} \log \pi_{\theta} (\mathbf{a} | \mathbf{s})^T]$$ Fisher-information matrix can estimate with samples # Covariant/natural policy gradient $$D_{\mathrm{KL}}(\pi_{\theta'} \| \theta_{\pi}) \approx (\theta' - \theta)^T \mathbf{F} (\theta' - \theta)$$ $$\mathbf{F} = E_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s})^{T}]$$ $$\theta' \leftarrow \arg\max_{\theta'} (\theta' - \theta)^T \nabla_{\theta} J(\theta) \text{ s.t. } D(\pi_{\theta'}, \pi_{\theta}) \leq \epsilon$$ $$\theta \leftarrow \theta + \alpha \mathbf{F}^{-1} \nabla_{\theta} J(\theta)$$ natural gradient: pick α trust region policy optimization: pick ϵ can solve for optimal α while solving $\mathbf{F}^{-1}\nabla_{\theta}J(\theta)$ conjugate gradient works well for this (figure from Peters & Schaal 2008) see Schulman, L., Moritz, Jordan, Abbeel (2015) Trust region policy optimization ### Advanced policy gradient topics - What more is there? - Next time: introduce value functions and Q-functions - Later in the class: more on natural gradient and automatic step size adjustment # Example: policy gradient with importance sampling $$\nabla_{\theta'} J(\theta') = E_{\tau \sim \pi_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta'} \log \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) \left(\prod_{t'=1}^{t} \frac{\pi_{\theta'}(\mathbf{a}_{t'}|\mathbf{s}_{t'})}{\pi_{\theta}(\mathbf{a}_{t'}|\mathbf{s}_{t'})} \right) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) \right) \right]$$ - Incorporate example demonstrations using importance sampling - Neural network policies #### Example: trust region policy optimization - Natural gradient with automatic step adjustment - Discrete and continuous actions - Code available (see Duan et al. '16) ### Policy gradients suggested readings #### Classic papers - Williams (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning: introduces REINFORCE algorithm - Baxter & Bartlett (2001). Infinite-horizon policy-gradient estimation: temporally decomposed policy gradient (not the first paper on this! see actor-critic section later) - Peters & Schaal (2008). Reinforcement learning of motor skills with policy gradients: very accessible overview of optimal baselines and natural gradient - Deep reinforcement learning policy gradient papers - Levine & Koltun (2013). Guided policy search: deep RL with importance sampled policy gradient (unrelated to later discussion of guided policy search) - Schulman, L., Moritz, Jordan, Abbeel (2015). Trust region policy optimization: deep RL with natural policy gradient and adaptive step size - Schulman, Wolski, Dhariwal, Radford, Klimov (2017). Proximal policy optimization algorithms: deep RL with importance sampled policy gradient